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Abstract 

Heart Failure (HF) is a condition where the heart 

cannot pump enough blood to meet the body's needs. 

When symptoms worsen, patients require urgent care to 

avoid fatal outcomes. This study examined rhythm and 

ventricular activation stability features and their link to 

HF patient mortality. 

We analyzed data from 10,800 hospitalized HF 

patients using MIMIC-IV ECG and clinical datasets. 

Automated processing extracted QRS complex and heart 

rhythm features. Seventeen features were assessed for 

their ability to predict 3-year mortality using survival 

analysis. Lasso regression selected key predictors and 

built a multivariate model. Hazard ratios (HR) were 

calculated using the log-rank method. 

Mortality was strongly associated with QRS 

morphology and RR-interval instability (e.g., RR-interval 

variation range, χ² = 68.1, p < 0.0001), though age 

remained the most powerful predictor (χ² = 476.7, p < 

0.0001). The model built from 13 selected features 

yielded an HR of 2.26 (95% CI 2.03–2.52), compared to 

2.09 (95% CI 1.88–2.33) for age alone. 

This study highlights the significant role of rhythm and 

conduction instability in HF mortality, though age 

remains the dominant predictor. 

 

1. Introduction 

Heart failure (HF) is a leading cause of hospitalization 

and mortality worldwide. Accurate risk stratification is 

crucial for improving outcomes, yet current models rely 

heavily on demographic and clinical variables.  

Electrocardiographic (ECG) features, particularly those 

reflecting rhythm and conduction stability, may offer 

additional prognostic value but are underexplored in large 

HF populations. This study investigates the predictive 

power of ECG-derived features - such as QRS 

morphology, ectopic beats presence as premature 

ventricular contractions (PVC), atrial premature 

contractions (PAC), and RR-interval variability - for 

long-term mortality in hospitalized HF patients.  

 

 

Using automated analysis of MIMIC-IV data and 

survival modeling, we assess whether these features 

improve risk prediction beyond age and other clinical 

factors. Our findings suggest that rhythm and conduction 

instability are significant mortality predictors, with 

potential to enhance HF management strategies. 

 

2. Method 

For this study, we utilized the MIMIC-IV ECG dataset 

[1], the MIMIC-IV Clinical Database [2], and the 

MIMIC-IV-ECG-Ext-ICD dataset, which provides links 

between the ECG and Clinical parts, all of which are 

available from PhysioNet [3]. 

 

2.1. Dataset 

From the MIMIC-IV dataset, we extracted all patients 

with a heart failure diagnosis, as classified by the 

International Classification of Diseases (ICD-9/10), who 

were discharged from the Intensive Care Unit (ICU) or 

the emergency department. The resulting cohort 

description is shown in Table 1.  

 

Table 1. Patient cohort summary table. 

 

Variable Value 

Count  10,800 

Age (years) 72.3 ± 13.5 

Gender - female 5,006 (46%) 

Died 3 years after discharge 3,405 (32%) 

Avg. time to death (days) 867 

 

We acquired each patient's ECG signal (12-lead, 10 

seconds, 500 Hz sampling, WFDB format) from the 

MIMIC-IV-ECG, together with QRS duration, QT 

interval, QRS axis, and T-axis. Furthermore, we acquired 

the age, gender, death status, and time to death from the 

MIMIC-IV Clinical database. 
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2.2. Data processing 

Since MIMIC-ECG data (Fig.1-A) are in WFDB 

format, we loaded signals and converted them to EDF 

using the “pyedflib” Python package (Fig.1B). Then, 

EDF files (lead “I” only) were fed into J.O.S.E.P.H. 

solver version 0.4.2 [4], producing XML files describing 

heart activity (Fig.1C). From J.O.S.E.P.H. we derived 

detailed descriptors as ratio of PVCs, PACs, number of 

QRS morphological groups, RR statistical description, 

and BPM statistical description. 

QT intervals, obtained from the MIMIC-IV dataset, 

were corrected using Bazett’s formula into QTc (Fig.1D). 

The combination of these features formed a complete 

feature dataset (Fig.1E), further used for univariate 

(Fig.1F) and multivariate analysis (Fig.1G) 

 

 

Figure 1. Method workflow: MIMIC-IV data (A) ECGs 

are converted into EDF files (B) and processed with 

J.O.S.E.P.H. solver (C). Other features are acquired from 

the database (D). Complete feature dataset (E) is used for 

univariate analysis (F) and multivariate analysis (G).

From the feature dataset, we removed features with less 

than 2% of positive cases (detected PVCs/PACs in 

couplets, triplets, quadruplets, bigeminies, and 

trigeminies). 

 

2.3. Univariate analysis 

For each feature, we evaluated its association with all-

cause mortality: we dichotomized the population by 

feature median and quantified its ability to separate the 

population into groups with better and worse prognosis. 

Separation ability in the 1-year follow-up was measured 

by the log-rank test and chi-square using the lifelines 

Python package [5].  

 

2.4. Multivariate analysis 

    In multivariate analysis (Fig.1G), we split the dataset 

into a training and testing part (60-40% ratio). Non-

categorical variables were standardized. Then, we 

employed LASSO regression from the scikit-learn 

package for feature selection (in 5-fold cross-validation) 

and building the model. The target for the modelling was 

3-year mortality. 

Finally, we processed test data with the produced 

model. The population was split using the model output 

median, and model performance was evaluated using the 

chi-square (χ²), log-rank test, and hazard ratio (HR) with 

95% confidence intervals (CI) using the GraphPad Prism 

software (version 9.5.1). Dichotomization was visualized 

using Kaplan-Meier plots. 

When multivariate analysis was done, we returned to 

univariate analysis and examined changes in selected 

features in terms of prediction performance in 0-1 month, 

2-6 months, 7-12 months, and 13-36 months time frames. 

Using the Mann-Whitney U-test, we compared changes in 

consecutive time frames as well as differences in the 

population surviving at least 3 years. 

 

3. Results and discussion 

3.1. Univariate analysis 

Univariate analysis (Tab.2) has shown the expected 

strong effect of age (χ² 476.7), but also revealed other 

associations, such as the standard deviation of heart rate 

(χ² 76.5), the variation range of beat-to-beat RR intervals 

(χ² 68.1), or the minimal RR interval (χ² 44.9). 

We also tested the association with the presence of 

other QRS morphological groups in several ways. The 

ratio of abnormal QRS complexes (PVCs, PACs, aberated 

beats, fusion beats…) showed χ² of 42.8; the total count 

of QRS morphological groups showed χ² of 17.8. The 

PVC ratio showed χ² 43.8, while the count of isolated 
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PVCs led to χ² of 36.9. However, the association with 

PACs was much weaker, shown only χ² of 4.8 and 4.6 for 

the PAC ratio and count of isolated PACs, respectively. 

 

Table 2. Univariate and multivariate results. Feature 

medians were used to split the population; p-value and χ² 

refer to the results of the log-rank test. Coefficient refers 

to LASSO regression coefficients. If it is missing, the 

feature was not selected.  

 

Feature p-value χ² Coefficient 

Age 0.000 476.7 + 0.114 

Gender (F) 0.974 0.0 - 0.003 

     

QRS Morphs. 0.000 17.8 + 0.008 

Ab. QRS rat. 0.000 42.8   

PVC ratio 0.000 43.0   

PVC isolated 0.000 36.9 + 0.013 

PAC ratio 0.029 4.8 - 0.000 

PAC isolated 0.031 4.6 - 0.016 

     

H. rate min 0.178 1.8 + 0.036 

H. rate max 0.000 44.9   

H. rate std 0.000 76.5   

H. rate avg 0.000 13.4   

     

RR avg 0.012 6.3   

RR std 0.000 57.8   

RR min 0.000 44.8 - 0.010 

RR max 0.171 1.9   

RR range 0.000 68.1 + 0.010 

     

QRS-axis 0.000 18.9 + 0.007 

T-axis 0.015 5.9 - 0.006 

QRS duration 0.000 29.3 + 0.016 

QTc 0.000 22.9 + 0.004 

 

These results suggest that a fast and varying (in terms 

of morphology and timing) heart rhythm is associated 

with higher mortality. 

We also tested markers describing ventricular 

depolarization and repolarization in terms of durations 

and directions. From this domain, QRS duration showed 

the strongest association, with a χ² of 29.3, followed by 

the corrected QT interval (χ² = 22.9). Direction 

descriptors showed weaker associations with χ² of 18.9 

and 5.9 for the QRS axis and T axis, respectively. 

 

3.2. Multivariate analysis 

The model was trained on 60% of the dataset, resulting 

in the selection of 13 features. The feature coefficients are 

shown in Tab.2, the last column. Feature importance is 

the absolute value of each coefficient. While age remains 

the strongest coefficient (0.114), the LASSO selection 

process changed the order of other features, automatically 

finding the optimal combination to predict the outcome.  

In terms of rhythm pace, the strongest feature was 

minimal heart rate (+0.036) together with maximal RR 

interval (-0.010), both showing that elevated heart rhythm 

is associated with a worse outcome. The variation range 

of RR intervals, the number of isolated PVCs, and the 

number of QRS morphological groups also suggest that 

strong rhythm variations and their connection to PVCs 

are associated with a worse prognosis. However, the PAC 

ratio (describing the presence of all kinds of PACs) and 

the count of isolated PACs showed a negative association 

with the outcome. Contrary to this finding, univariate 

analysis showed a positive association with the outcome, 

meaning that the model might use this feature to reduce 

the effect of irregular rhythm when it is caused by PACs.  

Finally, we dichotomized the test set data by (training) 

median output and evaluated model performance using 

survival analysis. Tab.3 shows the model's results (χ² 

209.6, HR 2.26 with 95% CI between 2.03-2.52) and, for 

comparison purposes, the dichotomization based on age 

alone (χ² 169.3, HR 2.09 with 95% CI between 1.88-

2.33).  

 

Table 3. Survival analysis using test set; population was 

dichotomized using the median output of the proposed 

model (2nd row) and the median age (1st row). 

 

    χ² p-value HR (95%CI) 

Age  169.3 <0.0001 2.09 (1.88-2.33) 

Model 209.6 <0.0001 2.26 (2.03-2.52) 

 

The survival analysis in Fig.3 shows strong separation 

of patients above and below the model median output in 

the 3-year follow-up. 

 
Figure 2. Kaplan-Meier curve for population (N=4,195) 

separated by model median shows significant separation. 

Green – patients above model median; gray – patients 

below model median. Transparent zone: 95% confidence 

intervals. 

 

Findings related to heart rate and QRS duration point 

to the same association as shown in the independent 

VICTORIA study[6]. That study also showed a similar, 

but non-significant, effect of QTc. 
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Finally, we examined selected features univariately 

within specific timeframes to investigate how their 

associations evolve over time. Fig. 3 shows changes in 

consecutive timeframes. It also shows associations with 

the surviving population (Fig.3, dashed line). These 

results suggest that modeling across different timeframes 

will likely yield different feature sets.  

 

4.  Conclusions 

 
In this study, we explored the association of ECG-

derived markers with the survival of HF patients 

discharged from the ICU/emergency departments. Results 

showed that features describing the heart rhythm play  

a statistically significant role in cases of elevated resting 

heart rate, the presence of PVCs, and the presence of 

multiple QRS morphological groups.  
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Figure 3. Selected features for the population deceased 

in specific timeframes. Dashed line - surviving 

population (≥ 3-years). P-values: * <0.05,0.01), ** 

<0.01,0.001), *** <0.00, ns – non-significant. 
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