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Abstract

Heart Failure (HF) is a condition where the heart
cannot pump enough blood to meet the body's needs.
When symptoms worsen, patients require urgent care to
avoid fatal outcomes. This study examined rhythm and
ventricular activation stability features and their link to
HF patient mortality.

We analyzed data from 10,800 hospitalized HF
patients using MIMIC-1V ECG and clinical datasets.
Automated processing extracted QRS complex and heart
rhythm features. Seventeen features were assessed for
their ability to predict 3-year mortality using survival
analysis. Lasso regression selected key predictors and
built a multivariate model. Hazard ratios (HR) were
calculated using the log-rank method.

Mortality was strongly associated with QRS
morphology and RR-interval instability (e.g., RR-interval
variation range, y> = 68.1, p < 0.0001), though age
remained the most powerful predictor (x> = 476.7, p <
0.0001). The model built from 13 selected features
yielded an HR of 2.26 (95% CI 2.03-2.52), compared to
2.09 (95% CI 1.88-2.33) for age alone.

This study highlights the significant role of rhythm and
conduction instability in HF mortality, though age
remains the dominant predictor.

1. Introduction

Heart failure (HF) is a leading cause of hospitalization
and mortality worldwide. Accurate risk stratification is
crucial for improving outcomes, yet current models rely
heavily on demographic and clinical variables.

Electrocardiographic (ECG) features, particularly those
reflecting rhythm and conduction stability, may offer
additional prognostic value but are underexplored in large
HF populations. This study investigates the predictive
power of ECG-derived features - such as QRS
morphology, ectopic beats presence as premature
ventricular  contractions (PVC), atrial premature
contractions (PAC), and RR-interval variability - for
long-term mortality in hospitalized HF patients.
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Using automated analysis of MIMIC-IV data and
survival modeling, we assess whether these features
improve risk prediction beyond age and other clinical
factors. Our findings suggest that rhythm and conduction
instability are significant mortality predictors, with
potential to enhance HF management strategies.

2. Method

For this study, we utilized the MIMIC-IV ECG dataset
[1], the MIMIC-IV Clinical Database [2], and the
MIMIC-IV-ECG-Ext-ICD dataset, which provides links
between the ECG and Clinical parts, all of which are
available from PhysioNet [3].

2.1. Dataset

From the MIMIC-IV dataset, we extracted all patients
with a heart failure diagnosis, as classified by the
International Classification of Diseases (ICD-9/10), who
were discharged from the Intensive Care Unit (ICU) or
the emergency department. The resulting cohort
description is shown in Table 1.

Table 1. Patient cohort summary table.

Variable Value
Count 10,800
Age (years) 72.3+£13.5

Gender - female 5,006 (46%)
Died 3 years after discharge 3,405 (32%)
Avg. time to death (days) 867

We acquired each patient's ECG signal (12-lead, 10
seconds, 500 Hz sampling, WFDB format) from the
MIMIC-IV-ECG, together with QRS duration, QT
interval, QRS axis, and T-axis. Furthermore, we acquired
the age, gender, death status, and time to death from the
MIMIC-IV Clinical database.
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2.2. Data processing

Since MIMIC-ECG data (Fig.1-A) are in WFDB
format, we loaded signals and converted them to EDF
using the “pyedflib” Python package (Fig.1B). Then,
EDF files (lead “I” only) were fed into J.O.S.E.P.H.
solver version 0.4.2 [4], producing XML files describing
heart activity (Fig.1C). From J.O.S.E.P.H. we derived
detailed descriptors as ratio of PVCs, PACs, number of
QRS morphological groups, RR statistical description,
and BPM statistical description.

QT intervals, obtained from the MIMIC-IV dataset,
were corrected using Bazett’s formula into QTc (Fig.1D).
The combination of these features formed a complete
feature dataset (Fig.1E), further used for univariate
(Fig.1F) and multivariate analysis (Fig.1G)
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Figure 1. Method workflow: MIMIC-IV data (A) ECGs
are converted into EDF files (B) and processed with
J.O.S.E.P.H. solver (C). Other features are acquired from
the database (D). Complete feature dataset (E) is used for
univariate analysis (F) and multivariate analysis (G).

From the feature dataset, we removed features with less
than 2% of positive cases (detected PVCs/PACs in
couplets, triplets, quadruplets, bigeminies, and
trigeminies).

2.3.  Univariate analysis

For each feature, we evaluated its association with all-
cause mortality: we dichotomized the population by
feature median and quantified its ability to separate the
population into groups with better and worse prognosis.
Separation ability in the 1-year follow-up was measured
by the log-rank test and chi-square using the lifelines
Python package [5].

2.4.  Multivariate analysis

In multivariate analysis (Fig.1G), we split the dataset
into a training and testing part (60-40% ratio). Non-
categorical variables were standardized. Then, we
employed LASSO regression from the scikit-learn
package for feature selection (in 5-fold cross-validation)
and building the model. The target for the modelling was
3-year mortality.

Finally, we processed test data with the produced
model. The population was split using the model output
median, and model performance was evaluated using the
chi-square (?), log-rank test, and hazard ratio (HR) with
95% confidence intervals (CI) using the GraphPad Prism
software (version 9.5.1). Dichotomization was visualized
using Kaplan-Meier plots.

When multivariate analysis was done, we returned to
univariate analysis and examined changes in selected
features in terms of prediction performance in 0-1 month,
2-6 months, 7-12 months, and 13-36 months time frames.
Using the Mann-Whitney U-test, we compared changes in
consecutive time frames as well as differences in the
population surviving at least 3 years.

3. Results and discussion

3.1.  Univariate analysis

Univariate analysis (Tab.2) has shown the expected
strong effect of age (¥*>476.7), but also revealed other
associations, such as the standard deviation of heart rate
(% 76.5), the variation range of beat-to-beat RR intervals
(x* 68.1), or the minimal RR interval (¥ 44.9).

We also tested the association with the presence of
other QRS morphological groups in several ways. The
ratio of abnormal QRS complexes (PVCs, PACs, aberated
beats, fusion beats...) showed ¥? of 42.8; the total count
of QRS morphological groups showed y? of 17.8. The
PVC ratio showed y* 43.8, while the count of isolated
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PVCs led to y* of 36.9. However, the association with
PACs was much weaker, shown only y? of 4.8 and 4.6 for
the PAC ratio and count of isolated PACs, respectively.

Table 2. Univariate and multivariate results. Feature
medians were used to split the population; p-value and ¥?
refer to the results of the log-rank test. Coefficient refers
to LASSO regression coefficients. If it is missing, the
feature was not selected.

Feature p-value x> Coefficient
Age 0.000 4767 + 0.114
Gender (F) 0.974 0.0 - 0.003

QRS Morphs. 0.000 17.8  + 0.008
Ab. QRS rat. 0.000 42.8

PVC ratio 0.000 43.0
PVC isolated 0.000 369 + 0.013
PAC ratio 0.029 4.8 - 0.000
PAC isolated 0.031 4.6 - 0.016
H. rate min 0.178 1.8 + 0.036
H. rate max 0.000 44.9
H. rate std 0.000 76.5
H. rate avg 0.000 13.4
RR avg 0.012 6.3
RR std 0.000 57.8
RR min 0.000 448 - 0.010
RR max 0.171 1.9
RR range 0.000 68.1 + 0.010
QRS-axis 0.000 18.9 + 0.007
T-axis 0.015 5.9 - 0.006
QRS duration 0.000 293 + 0.016
QTc 0.000 229 + 0.004

These results suggest that a fast and varying (in terms
of morphology and timing) heart rhythm is associated
with higher mortality.

We also tested markers describing ventricular
depolarization and repolarization in terms of durations
and directions. From this domain, QRS duration showed
the strongest association, with a > of 29.3, followed by
the corrected QT interval (x> = 22.9). Direction
descriptors showed weaker associations with y* of 18.9
and 5.9 for the QRS axis and T axis, respectively.

3.2.  Multivariate analysis

The model was trained on 60% of the dataset, resulting
in the selection of 13 features. The feature coefficients are
shown in Tab.2, the last column. Feature importance is
the absolute value of each coefficient. While age remains
the strongest coefficient (0.114), the LASSO selection

process changed the order of other features, automatically
finding the optimal combination to predict the outcome.

In terms of rhythm pace, the strongest feature was
minimal heart rate (+0.036) together with maximal RR
interval (-0.010), both showing that elevated heart rhythm
is associated with a worse outcome. The variation range
of RR intervals, the number of isolated PVCs, and the
number of QRS morphological groups also suggest that
strong rhythm variations and their connection to PVCs
are associated with a worse prognosis. However, the PAC
ratio (describing the presence of all kinds of PACs) and
the count of isolated PACs showed a negative association
with the outcome. Contrary to this finding, univariate
analysis showed a positive association with the outcome,
meaning that the model might use this feature to reduce
the effect of irregular rhythm when it is caused by PACs.

Finally, we dichotomized the test set data by (training)
median output and evaluated model performance using
survival analysis. Tab.3 shows the model's results (y?
209.6, HR 2.26 with 95% CI between 2.03-2.52) and, for
comparison purposes, the dichotomization based on age
alone (¥* 169.3, HR 2.09 with 95% CI between 1.88-
2.33).

Table 3. Survival analysis using test set; population was
dichotomized using the median output of the proposed
model (2™ row) and the median age (1% row).

1 p-value HR (95%CI)
Age 169.3  <0.0001 2.09 (1.88-2.33)
Model  209.6  <0.0001  2.26(2.03-2.52)

The survival analysis in Fig.3 shows strong separation
of patients above and below the model median output in
the 3-year follow-up.
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Figure 2. Kaplan-Meier curve for population (N=4,195)
separated by model median shows significant separation.
Green — patients above model median; gray — patients
below model median. Transparent zone: 95% confidence

intervals.

Findings related to heart rate and QRS duration point
to the same association as shown in the independent
VICTORIA study[6]. That study also showed a similar,
but non-significant, effect of QTc.
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Figure 3. Selected features for the population deceased
in specific timeframes. Dashed line - surviving
population (> 3-years). P-values: * <0.05,0.01), **
<0.01,0.001), *** <0.00, ns — non-significant.

Finally, we examined selected features univariately
within specific timeframes to investigate how their
associations evolve over time. Fig. 3 shows changes in
consecutive timeframes. It also shows associations with
the surviving population (Fig.3, dashed line). These
results suggest that modeling across different timeframes
will likely yield different feature sets.

4. Conclusions

In this study, we explored the association of ECG-
derived markers with the survival of HF patients
discharged from the ICU/emergency departments. Results
showed that features describing the heart rhythm play
a statistically significant role in cases of elevated resting
heart rate, the presence of PVCs, and the presence of
multiple QRS morphological groups.
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